SOLAR PV STANDARD PLAN - COMPREHENSIVE

Central/String Inverter Systems for One and Two Family Dwellings

SCOPE: Use this plan ONLY for electrical review of utility-interactive central/string inverter systems not exceeding a combined system AC inverter output of 10kW on the roof of a single or duplex family dwelling or accessory building. The specific structural and fire requirements are covered under a separate permit. The photovoltaic system must interconnect to the load or line side of a single-phase AC service panel of 240Vac or less with a busbar rating of 225A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers, trackers or ac modules. Systems must be in compliance with current California Building Standards Codes and all applicable Los Angeles Codes. Other Articles of the California Electrical Code (CEC) shall apply as specified in 690.3.

MANUFACTURER’S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverters, modules, combiner/junction boxes, racking systems, and rapid shutdown system or equipment. Installation instructions for bonding and grounding equipment and rapid shutdown systems shall be provided, and local AHJs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be listed for the PV application (CEC 690.4(B)).

Job Address: ____________________________ Permit #: ____________________________

Contractor/ Engineer Name: ____________________________ License # and Class: ____________________________

Signature: ____________________________ Date: ____________________________ Phone Number: ____________________________

Total # of Inverters installed: ________ (If more than one inverter, complete and attach the “Supplemental Calculation Sheets” starting on page 12 & “Load Center Calculations” on page 19 if a new load center is to be used)

Inverter 1 AC Output Power Rating:	________ Watts
Inverter 2 AC Output Power Rating (if applicable):	________ Watts
Combined Inverter Output Power Rating:	________ ≤ 10,000 Watts

Location Ambient Temperatures:

1) Lowest expected ambient temperature for the location \(T_L \) = ________ °C
 Average ambient high temperature = ________ °C

2) Module \(V_{oc} \) (from module nameplate): ________ Volts
 3) Module \(I_{sc} \) (from module nameplate): ________ Amps

4) Module dc output power under standard test conditions (STC) = ________ Watts (STC)

5) **DC Module Layout**

 Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g. A,B,C,...)
 Number of modules per source circuit for inverter 1
 Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)

 Combiner 1:

 Combiner 2:

 Total number of source circuits for inverter 1:
6) Are DC/DC Converters used? Yes / No If “No,” go to STEP#7. If “Yes,” enter info below.

DC/DC Converter Model #: ____________ DC/DC Converter Max DC Input Voltage: _______ Volts
Max DC Output Current: _______Amps Max DC Output Voltage: _______ Volts
Max # of DC/DC Converters in an Input Circuit: _______ DC/DC Converter Max DC Input Power: _______ Watts
Number of modules per DC/DC Converter _______× Module DC Power [STEP#4] (______Watts) = _______ Watts
Calculated power from the equation above (______Watts) ≤ DC/DC Converter Max DC Input Power (______Watts)

If DC/DC Convert input voltage is 80 volts or greater, provide listed Arc-Fault Circuit protection (CEC 690.11).

7) Maximum System DC Voltage – Required for all systems

Max system dc voltage shall not exceed 600 volts, inverter manufacturer’s max input voltage rating (if dc/dc converters are not used) _______ volts, or dc/dc converter max dc input voltage rating (if applicable) _______ volts. If open-circuit voltage (Voc from STEP#2) temperature coefficients (β or ε) are provided by module manufacturer, use the calculation in Method 1. If Voc temperature coefficient is not provided by module manufacturer, use the calculation in Method 2.

Module Count: equal to maximum number of modules in ANY source circuit [STEP#5] for systems without dc/dc converters OR equal to number of modules per dc/dc converter [STEP#6] for systems with dc/dc converters

Method 1:

Voc temperature coefficient (β)= _______%/°C
Module Count per source circuit _______× \(\text{Voc} + [(T_l-25) \times (\beta \times \text{Voc})/100] \) = _______ Volts

If module manufacturer provides a voltage temperature coefficient (ε) in mV/°C, use the formula below.

Voc temperature coefficient (ε)= _______ mV/°C
Module Count per source circuit _______× \(\text{Voc} + [(T_l-25) \times (\epsilon/10000)] \) = _______ Volts

Method 2:

Module Count per source circuit _______× Voc _______× K_T = _______ Volts,
Where K_T= _______ is a correction factor for ambient temperatures below 25°C. See Table 690.7.

8) Maximum System DC Voltage from DC/DC Converters to Inverter – Only required if “Yes” in STEP#6

Maximum system dc voltage shall not exceed 600 volts or inverter manufacturer’s maximum input voltage rating. If using dc/dc converters with fixed source circuit voltage (connected in series), provide the calculation in Method 1. If using dc/dc converters connected in series with an inverter that regulates input dc voltage, provide the calculation in Method 2. If using dc/dc converters with fixed unit voltage (connected in parallel), provide the calculation in Method 3.

Method 1 (similar to Tigo MM-ES and Ampt Converters):
Max # of dc/dc converters in a source circuit [STEP#6] _______× Max dc output voltage [STEP#6] _______ Volts
= Max system dc voltage _______Volts
If Max system dc voltage _______> inverter input voltage rating (______Volts) OR 600 Volts, the number of DC/DC converters in the source circuit used for the Method 1 calculation must be reduced to comply with code.

Method 2 (similar to SolarEdge and inverters with Ampt Mode capabilities such as Kaco and Bonfiglioli):
Inverter max input voltage _______ Volts = Max system dc voltage _______ Volts
If Max system dc voltage _______ > 600 Volts, the inverter used for the Method 2 calculation must be changed to comply with code.

Method 3 (similar to Tigo MM-EP and eIQ vBoost):
Max dc output voltage [STEP#6] _______ = Max system dc voltage _______ Volts
If Max system dc voltage _______ > inverter input voltage rating (______Volts) OR 600 Volts, the dc/dc converters or inverter used for the Method 3 calculation must be changed to comply with code.
Central/String Inverter Systems for One and Two Family Dwellings

9) **Maximum Source Circuit Current** – If dc/dc converters are used, use 9(A). If not, use 9(B).

- Calculate the maximum dc short circuit current per source circuit to allow for peak sunlight conditions:
- A. Largest number of dc/dc converters run in parallel on one source circuit: _________ (= 1 if not run in parallel)

 Max DC Output Current [STEP#6] ________ × dc/dc converters in parallel ________ = Maximum Circuit Current ________ Amps

- B. Module I_{sc} [STEP#3] ________ × 1.25 = Maximum Circuit Current ________ Amps

10) **Sizing PV Source Circuit Conductors** – Use the LARGER minimum conductor ampacity from Method A or Method B when determining required conductor size.

- **Method A:**

 Minimum conductor ampacity: Maximum source circuit current [STEP#9] ________ × 1.25 = ________ Amps

- **Method B:**

 # of current-carrying conductors in raceway: ________

 Raceway height above the roof: ________ inches

 $C_r = ____ C_r$ is the conduit fill coefficient (refer to Table 310.15(B)(3)(a))

 $C_T = ____ C_T$ is the coefficient dependent on the highest continuous ambient temperature (refer to Table 310.15(B)(2)(a)) and raceway height above roof (refer to Table 310.15(B)(3)(c) if applicable)

 Minimum conductor ampacity: Maximum source circuit current [STEP#9] ________/ ($C_r × C_T$) = ________ Amps

Using the greater current as calculated in Method A or Method B, use Table 310.15(B)(16) to identify source circuit conductor size (using copper 90°C-rated insulated conductors). The minimum conductor ampacity calculated from Method A or Method B shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (60°C or 75°C).

Minimum Source Circuit Conductor Size _____ AWG

(For ungrounded systems, exposed source conductors must be listed “PV Wire,” NOT USE-2, per 2013 CEC 690.35(D))

11) **Are PV source circuits combined prior to the inverter?** Yes / No

- If No, use Single Line Diagram 1 and proceed to STEP#13.
- If Yes, Is the PV source circuit combined on the roof? Yes / No

- If No, use Single Line Diagram 2.

- If Yes, provide a load break disconnecting means rated for the load in the combiner or within 6ft of the combiner (CEC 690.15(C)), and use single line diagram 2.

- If the source circuit voltage to combiner is 80 volts or greater, provide listed Arc-Fault Circuit protection (CEC 690.11).

 Source circuits and output circuits connected to more than one electrical source may be required to have overcurrent protection devices (OCPDs) located so as to provide overcurrent protection from all sources per 690.9(A). Fuses (when used) shall be installed as part of a finger safe fuse holder. Where source circuit OCPD is not required, please put N/A in 11A or 11B as applicable.

Source circuit OCPD rating:

- **A. Combiner 1:**

 (Total number of source circuits) – 1 = ________ (A)

 (A) * (Module I_{sc}) × 1.25 = ________ Amps (B)

 Modules max OCPD rating (from module nameplate) = ________ Amps (C)

 If (B) > (C), source circuit OCPD is required at the combiner to protect paralleled source circuits

 Source circuit OCPD size ________ Amps

- **B. Combiner 2 (If unused, circle N/A):**

 N/A

 (Total number of source circuits) – 1 = ________ (A)

 (A) * (Module I_{sc}) × 1.25 = ________ Amps (B)

 Modules max OCPD rating (from module nameplate) = ________ Amps (C)

 If (B) > (C), source circuit OCPD is required at the combiner to protect paralleled source circuits

 Source circuit OCPD size ________ Amps
12) **Sizing PV Output Circuit Conductors** – If a Combiner box will NOT be used [STEP #11], proceed to STEP #13. Use the LARGER minimum conductor ampacity from Method A or Method B when determining required conductor size, for both combiners 1 and 2 (when applicable).

Combiner 1:

Method A:
- Minimum conductor ampacity: Maximum source circuit current [STEP#9] _______ × 1.25 × Number of parallel source circuits (STEP#5) _______ = _______ Amps

Method B:
- # of current-carrying conductors in raceway: ___ Raceway height above the roof: ___ inches (N/A if inapplicable)
 - \(C_F = C_T = _____ \)
- Minimum conductor ampacity: Maximum circuit current [STEP#9] _______ × Number of parallel source circuits (STEP#5) _____ / (C_F × C_T) = _______ Amps

Using the greater current as calculated in Method A or Method B, use Table 310.15(B)(16) to identify output circuit conductor size (using 90°C-rated copper insulated conductors). The minimum conductor ampacity calculated from Method A or Method B shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (60°C or 75°C).

Minimum Output Circuit Conductor Size _____ AWG

Combiner 2 (If unused, circle N/A): N/A

Method A:
- Minimum conductor ampacity: Maximum source circuit current [STEP#9] _______ × 1.25 × Number of parallel source circuits (STEP#5) _______ = _______ Amps

Method B:
- # of current-carrying conductors in raceway: ___ Raceway height above the roof: ___ inches (N/A if inapplicable)
 - \(C_F = C_T = _____ \)
- Minimum conductor ampacity: Maximum circuit current [STEP#9] _______ × Number of parallel source circuits (STEP#5) _____ / (C_F × C_T) = _______ Amps

Using the greater current as calculated in Method A or Method B, use 310.15(B)(16) to identify output circuit conductor size (using 90°C-rated copper insulated conductors). The minimum conductor ampacity calculated from Method A or Method B shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (60°C or 75°C).

Minimum Output Circuit Conductor Size _____ AWG

13) Inverter DC Disconnect (The dc disconnect shall be grouped with the inverter and inverter ac disconnect)

Does the inverter have an integrated dc disconnect? Yes / No

- If Yes, proceed to STEP #14.
- If No, the external dc disconnect to be installed is rated for _____ Amps (dc) and _____ Volts (dc)

The dc disconnect rating must be greater than or equal to the Max Output Circuit Current [STEP#12 - Method A] or Max Source Circuit Current [STEP #10 - Method A].

Version: April 2, 2020
SOLAR PV STANDARD PLAN - COMPREHENSIVE

Central/String Inverter Systems for One and Two Family Dwellings

14) Inverter information:
Manufacturer: ______________ Model: ______________ Max. Continuous AC Output Current Rating: _______Amps
Maximum Inverter DC Input Current Rating: _______Amps

Max Source Circuit Current (STEP#9)______Amps × Number of parallel source circuits (STEP#5)______ = _______Amps
Calculated current from the line above (______Amps) ≤ Max. Inverter Short Circuit Current Rating (______Amps)

Max. Inverter Short Circuit Current Rating = 1.5 (per UL 1741 testing standard) × Max. Inverter DC Input Current Rating, if max short circuit current rating is not available from manufacturer.

Integrated DC Arc-Fault Circuit Protection? Yes / No (If “No” is selected, provide arc-fault protection per 690.11)

AC Information:

15) Sizing Inverter Output Circuit Conductors and OCPD: Use the LARGER conductor ampacity from Method A or Method B when determining conductor size. Use Method A to determine Inverter Output OCPD rating.

Method A:
Minimum conductor ampacity: Max AC Output Current Rating [STEP#14]________ × 1.25 = _______Amps

Method B:
of current-carrying conductors in raceway:______ Raceway height above the roof:______ inches

C_F = ____ C_i is the conduit fill coefficient (refer to Table 310.15 (B)(3)(a))

C_T = ____ C_T is the coefficient dependent on the highest continuous ambient temperature (refer to Table 310.15(B)(2)(a) and raceway height above roof (refer to Table 310.15(B)(3)(c) if applicable)

Minimum conductor ampacity: Maximum ac output currentrating [STEP#14]______/ (C_F × C_T) = _______Amps

Minimum Conductor Size:______ AWG

Using the greater current as calculated in Method A or Method B, use Table 310.15(B)(16) to identify ac circuit conductor size. The minimum conductor ampacity shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (60°C or 75°C).

Size the inverter output OCPD based on the value calculated in Method A. Where the figure is between two standard values of fuse/breaker sizes (see 240.6(A)), the next higher size may be used (see 240.4(B)). The OCPD’s rating may not exceed the conductor ampacity or the inverter manufacturer’s max OCPD rating for the inverter.

Inverter Output Max OCPD rating = _______Amps
Central/String Inverter Systems for One and Two Family Dwellings

16) **Point of Connection to Utility:** One of the following methods of interconnection must be utilized.

A. **Supply Side Connection:** Yes / No
 Check with your local jurisdiction to determine if this connection is allowed.
 Supply side connections shall only be permitted where the service panel is listed for the purpose. The sum of the ratings of all overcurrent devices (STEP #15 or S22) connected to power production sources shall not exceed the rating of the service. The connection shall not compromise listing or integrity of any equipment.

B. **Load Side Connection:** Yes / No
 Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location? Yes / No
 (If No to the statement above, the sum of OCPD(s) supplying the panel cannot exceed 100% of the busbar rating; Circle 100% as the multiplier in calculation. Otherwise, circle 120% and use that as the multiplier)
 Per 705.12(D)(2)(3): [Inverter output OCPD size [STEP #15 or S22] + Main OCPD Size] × [Bus size × (100% or 120%)]

| Maximum Combined Supply OCPDs Based on Busbar Rating (Amps) per CEC 705.12(D)(2)(3) |
|---------------------------------|----------|----------|----------|----------|----------|----------|
| Busbar Rating | 100 | 125 | 125 | 200 | 200 | 200 | 225 | 225 | 225 |
| Main OCPD | 100 | 100 | 125 | 150 | 175 | 200 | 175 | 200 | 225 |
| Max Combined PV System OCPD(s) at 120% of Busbar Rating | 20 | 50 | 25 | 60* | 60* | 40 | 60* | 60* | 45 |
| Max Combined PV System OCPD(s) at 100% of Busbar Rating | 0 | 25 | 0 | 50 | 25 | 0 | 50 | 25 | 0 |

*This value has been lowered to 60A from the calculated value to reflect 10kW ac size maximum.

All upstream panelboard busbar ratings must also comply with 705.12(D)(2)(3). If the main breaker is reduced, a load calculation per Article 220 must accompany the Standard Plans to show that the reduction is allowed.

17) **Per Section 690.53,** a permanent label for the dc power source shall be installed at the PV dc disconnecting means that shall indicate the following:

(a) Rated maximum power-point current (I_{mpp} from the module nameplate):
 \[I_{mpp} \times \{1 \text{ (one source circuit) OR } \# \text{ source circuits in parallel [STEP#5]}\} \quad \text{Amps}\]

(b) Rated maximum power-point voltage (V_{mpp} from the module nameplate):
 \[V_{mpp} \times \{\text{Max # of modules per source circuit [STEP#5]}\} \quad \text{Volts}\]

(c) Short circuit current of the PV system (= STEP#9, if no strings are combined prior to inverter)
 \[\text{Maximum source circuit current (STEP#9) \times (Number of strings)} \quad \text{Amps}\]

(d) Maximum system voltage [STEP#7 or #8 for systems with dc/dc converters]
 [For systems with dc/dc converters, this label’s maximum system voltage value shall be the larger of the following: the lowest value of the inverter’s input voltage range OR the value calculated in STEP#8.]

If using dc/dc converters in series (fixed source circuit voltage) with or without an input voltage-regulating inverter, the value for (a) shall be the value for (c), and (b) shall not be applicable. If using dc/dc converters in parallel (fixed unit voltage), the value for (b) shall be the value for (d), and (a) shall not be applicable.

18) **Per Section 690.54,** a permanent label shall be installed at an accessible location at the PV ac disconnecting means that shall indicate the following:

(a) Rated ac output current:
 AC Output Inverter 1 [STEP#14] \quad \text{Amps}
 AC Output Inverter 2 [If Applicable] \quad \text{Amps}
 Rated ac output current (sum of above values): \quad \text{Amps}

(b) Nominal operating ac voltage: \quad \text{Volts}
19) Rapid Shutdown

The rapid shutdown initiation device shall be labeled according to CEC 690.56(C), and its location shall be shown on the site plan drawing. The rapid shutdown initiation device may be the inverter output or input circuits’ disconnecting means, the service main disconnect, or a separate device as approved by the AHJ. The disconnecting means shall be identified for the purpose, suitable for their environment, and listed as a disconnecting means. A single rapid shutdown initiation device shall operate all disconnecting means necessary to control conductors in compliance with CEC 690.12.

Note: Check with the AHJ regarding approval where field verification of reduction of voltage within the time required by CEC 690.12 is performed.

Rapid shutdown shall be provided as required by CEC 690.12 with one of the following methods (Select one):

☐ The inverter(s) is within 10 feet of the array, and the location of the inverter is such that uncontrolled PV system conductors are no greater than 5 feet of length within the building. A remotely-controlled AC disconnecting means is required immediately adjacent to or as close as practicable to the inverters, and located within 10 feet of the array.

☐ The inverter(s) is within 10 feet of the array, and the location of the inverter is such that uncontrolled PV system conductors are no greater than 5 feet of length within the building. Reduction of the voltage for the inverter output within the time required by CEC 690.12 shall be verified in the field, or the inverter output is listed to UL 1741 with rapid shutdown capability.

☐ Remotely-controlled DC disconnecting means are located within 10 feet of the PV array and DC input of the inverter(s), and the locations of the disconnecting means are such that uncontrolled PV system conductors are no greater than 5 feet of length within the building. Reduction of the voltage for the inverter output within the time required by CEC 690.12 shall be verified in the field, or the inverter output is listed to UL 1741 with rapid shutdown capability.

☐ Remotely-controlled DC disconnecting means is located within 10 feet of the array at the DC input of inverter(s) connected to a module level DC-DC converter circuit where the DC-DC converter circuit meets the requirements for controlled conductors when disconnected from the inverter. Reduction of the voltage for the DC-DC converter output and the inverter output within the time required by CEC 690.12 shall be verified in the field, or the DC-DC converter output and the inverter output are listed to UL 1741 with rapid shutdown capability.

☐ A UL 1741-listed and identified inverter(s) with input and output rapid shutdown capability supplying module level DC-DC converter circuit where the DC-DC converter circuit meets the requirements for controlled conductors when disconnected from the inverter.

☐ A UL 1741-listed rapid shutdown system:

Manufacturer: __

Testing Agency Name: __

System Model Number: ___

System Components: __
20) Grounding and Bonding:

Check one of the boxes for whether system is grounded or ungrounded:
☐ GROUNDED (SEE A & B)
☐ UNGROUNDED (SEE A & C)

A. All Systems:
Modules and racking must be bonded by a method listed to the UL 2703 standard and recognized by the respective equipment manufacturers. Bonding method is subject to AHJ approval. DC and AC equipment grounding conductor (EGC) shall be sized based on source and output circuit conductors per 690.45 using Table 250.122. Where exposed to physical damage, it is required to be #6 AWG copper per 690.46. A DC EGC is required for both grounded and ungrounded systems. If an existing premises grounding electrode system is not present, a new grounding electrode system must be established per 250.53. The DC EGC leaving the array and the AC EGC must be contained within the same raceway or cable or otherwise run with the circuit conductors serving the array per 690.43(F), 690.43(A), and 250.134(B).

Where supplementary grounding electrodes are installed, a bonding jumper to the existing grounding electrode must be installed. Bonding jumpers must be sized to the larger grounding conductor that it is bonded to (CEC 250.58).

B. Grounded Systems:
The DC grounding electrode conductor (GEC) from the inverter terminal must be unbroken or irreversibly spliced and sized minimum #8 AWG copper per article 250.166. The DC GEC from the inverter terminal to the existing grounding electrode system must tie to the existing grounding electrode or be bonded to the existing AC GEC using an irreversible means, per 250.64(C)(1).

A combined DC GEC and AC EGC may be run from the inverter DC grounding terminal to the grounding busbar in the associated AC equipment. This combined grounding conductor must be sized to the larger of the GEC and EGC sizes, with the bonding requirements of EGCs and remaining continuous as a GEC, per 690.47(C)(3).

C. Ungrounded Systems:
A DC GEC shall not be required from the inverter DC grounding terminal to the building grounding electrode system. The EGC shall run from the inverter to the grounding busbar in the associated AC equipment, sized per 690.45, using Table 250.122. Ungrounded conductors must be identified per 210.5(C). White-finished conductors are not permitted.
Markings

CA Electrical Code (CEC) Articles 690 and 705 and CA Residential Code (CRC) Section R331 require the following labels or markings be installed at these components of the photovoltaic system:

- **WARNING**: PHOTOVOLTAIC POWER SOURCE
 - CEC 690.31(G)(3)
 - [Marked on junction/combiner boxes and conduit every 10']

- **WARNING**: THIS EQUIPMENT FED BY MULTIPLE SOURCES.
 - TOTAL RATING OF ALL OVERCURRENT DEVICES, EXCLUDING MAIN SUPPLY OVERCURRENT DEVICE, SHALL NOT EXCEED AMPECTIY OF BUSBAR.
 - CEC 705.12(D)(2)(3)(c)
 - [Required on new load center if answered “No” to Step S21]

- **WARNING**: PHOTOVOLTAIC SYSTEM EQUIPPED WITH RAPID SHUTDOWN
 - CEC 690.56(C)
 - [Required at location approved by AHJ]

Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8”) should be considered the minimum.

CEC 705.12 requires a permanent plaque or directory denoting all electric power sources on or in the premises and the rapid shutdown initiation device.
Central/String Inverter Systems for One and Two Family Dwellings

SOLAR PV STANDARD PLAN - COMPREHENSIVE

Central/String Inverter Systems for One and Two Family Dwellings

SOLAR PV MODULE / STRING

DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED)

SOURCE CIRCUIT JUNCTION BOX INSTALLED?: YES / NO

SEPARATE DC DISCONNECT INSTALLED?: YES / NO

INTERNAL INVERTER DC DISCONNECT: YES / NO

CENTRAL INVERTER LOAD CENTER INSTALLED?: YES / NO

PV PRODUCTION METER INSTALLED?: YES / NO

SEPARATE AC DISCONNECT INSTALLED?: YES / NO

* **SEPARATE AC DISCONNECT SHALL BE OPTIONAL.**

- **CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:**
- **GROUNDED (INCLUDE GEC)**
- **UNGROUNDED**

CHECK A BOX FOR RAPID SHUTDOWN DETAILS

FOR UNGROUNDED SYSTEMS:

- **DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT**
- **UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.**

SINGLE-LINE DIAGRAM #1 – NO STRINGS COMBINED PRIOR TO INVERTER

CONNECT TO INVERTER #2 (USE LINE DIAGRAM 2)

IF DC/DC CONVERTERS ARE USED, CHECK THE BOX BELOW THE CORRESPONDING CONFIGURATION

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION</th>
<th>CONDUCTOR/CONDUIT SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>USE-2 □ OR PV-WIRE □</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGC/GEC:</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>EGC/GEC:</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/GEC:</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>EGC/GEC:</td>
<td></td>
</tr>
</tbody>
</table>

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE

PARALLEL DC/DC CONVERTERS ON ONE SOURCE CIRCUIT (FIXED UNIT VOLTAGE DC/DC CONVERTERS)

DC/DC CONVERTERS ARE ALL RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS)

Version: April 2, 2020
SOLAR PV STANDARD PLAN - COMPREHENSIVE

Central/String Inverter Systems for One and Two Family Dwellings

SINGLE-LINE DIAGRAM #2 – COMBINING STRINGS PRIOR TO INVERTER

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:

- **GROUNDED** (INCLUDE GEC)
- **UNGROUNDED**

REFER TO STEP 19 FOR RAPID SHUTDOWN DETAILS

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

* Separate AC Disconnect Shall be Optional.
SOLAR PV STANDARD PLAN - COMPREHENSIVE

Central/String Inverter Systems for One and Two Family Dwellings

Supplemental Calculation Sheets for Inverter #2:
(Only include if no more than one additional inverter is used)

DC Information:

<table>
<thead>
<tr>
<th>Module Manufacturer:</th>
<th>Model:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S2) Module V<sub>oc</sub> (from module nameplate): _____ Volts</th>
<th>S3) Module I<sub>sc</sub> (om module nameplate): _____Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S4) Module dc output power under standard test conditions (STC) = _______ Watts (STC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S5) DC Module Layout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify each source circuit (string) for inverter 2 shown on the roof plan with a Tag (e.g. A,B,C,...)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of modules per source circuit for inverter 2</th>
<th>Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combiner 1:</td>
</tr>
<tr>
<td></td>
<td>Combiner 2:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total number of source circuits for inverter 2:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>S6) Are DC/DC Converters used? Yes / No If “No,” go to STEP#S7. If “Yes,” enter info below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC/DC Converter Model #:</td>
</tr>
<tr>
<td>Max DC Output Current: _____Amps</td>
</tr>
<tr>
<td>DC/DC Converter Max DC Input Voltage: _____Volts</td>
</tr>
</tbody>
</table>

| Max # of DC/DC Converters in an Input Circuit: |
| DC/DC Converter Max DC Input Power: _____Watts |

| Number of modules per DC/DC Converter _____× Module DC Power [STEP#S4] (_____Watts) = _____Watts |
| Calculated power from the equation above (_____Watts) ≤ DC/DC Converter Max DC Input Power (_____Watts) |

If DC/DC Convert input voltage is 80 volts or greater, provide listed Arc-Fault Circuit protection (CEC 690.11).

<table>
<thead>
<tr>
<th>S7) Maximum System DC Voltage – Required for all systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max system dc voltage shall not exceed 600 volts, inverter manufacturer’s max input voltage rating (if dc/dc converters are not used) _____volts, or dc/dc converter max dc input voltage rating (if applicable) _____volts.</td>
</tr>
</tbody>
</table>

If open-circuit voltage (V_{oc} from STEP#S2) temperature coefficients (β or ε) are provided by module manufacturer, use the calculation in Method 1. If V_{oc} temperature coefficient is not provided by module manufacturer, use the calculation in Method 2.

Module Count: equal to maximum number of modules in ANY source circuit [STEP#S5] for systems without dc/dc converters OR equal to number of modules per dc/dc converter [STEP#S6] for systems with dc/dc converters

Method 1:

V_{oc} temperature coefficient (β)= _____ %/°C

Module Count per source circuit _____× {V_{oc} + [(T_L-25) × (β × V_{oc}/100)]} = _____ Volts

If module manufacturer provides a voltage temperature coefficient (ε) in mV/°C, use the formula below.

V_{oc} temperature coefficient (ε)= _____ mV/°C

Module Count per source circuit _____× {V_{oc} + [(T_L-25) × (ε/1000)]} = _____ Volts

Method 2:

Module Count per source circuit _____× V_{oc} _____× K_T= _____ Volts,

Where K_T= _____ is a correction factor for ambient temperatures below 25°C. See Table 690.7.
S8) Maximum System DC Voltage from DC/DC Converters to Inverter – Only required if “Yes” in STEP#S6

Maximum system dc voltage shall not exceed 600 volts or inverter manufacturer’s maximum input voltage rating. If using dc/dc converters with fixed source circuit voltage (connected in series), provide the calculation in Method 1. If using dc/dc converters connected in series with an inverter that regulates input dc voltage, provide the calculation in Method 2. If using dc/dc converters with fixed unit voltage (connected in parallel), provide the calculation in Method 3.

Method 1:
If Max system dc voltage > inverter input voltage rating (Volts) OR 600 Volts, the number of DC/DC converters in the source circuit used for the Method 1 calculation must be reduced to comply with code.

Method 2:
Inverter max input voltage Volts = Max system dc voltage Volts
If Max system dc voltage > 600 Volts, the inverter used for the Method 2 calculation must be changed to comply with code.

Method 3:
Max dc output voltage [STEP#S6] = Max system dc voltage Volts
If Max system dc voltage > inverter input voltage rating (Volts) OR 600 Volts, the dc/dc converters or inverter used for the Method 3 calculation must be changed to comply with code.

S9) Maximum Source Circuit Current – If dc/dc converters are used, use 9(A). If not, use 9(B).

Calculate the maximum dc short circuit current per source circuit to allow for peak sunlight conditions:

A. Largest number of dc/dc converters run in parallel on one source circuit: (= 1 if not run in parallel)
Max DC Output Current [STEP#S6] × dc/dc converters in parallel = Maximum Circuit Current Amps

B. Module I_sc [STEP#S3] × 1.25 = Maximum Circuit Current Amps

S10) Sizing PV Source Circuit Conductors – Use the LARGER minimum conductor ampacity from Method A or Method B when determining required conductor size.

Method A:
Minimum conductor ampacity: Maximum source circuit current [STEP#S9] × 1.25 = Amps

Method B:
of current-carrying conductors in raceway: Raceway height above the roof: inches
C_F = _____C_F is the conduit fill coefficient (refer to Table 310.15 (B)(3)(a))
C_T = _____C_T is the coefficient dependent on the highest continuous ambient temperature (refer to Table 310.15(B)(2)(a) and raceway height above roof (refer to Table 310.15(B)(3)(c) if applicable)
Minimum conductor ampacity: Maximum source circuit current [STEP#S9]/ (C_F × C_T) = Amps

Using the greater current as calculated in Method A or Method B, use Table 310.15(B)(16) to identify source circuit conductor size (using copper 90°C-rated insulated conductors). The minimum conductor ampacity calculated from Method A or Method B shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (60°C or 75°C).

Minimum Source Circuit Conductor Size AWG
(For ungrounded systems, exposed source conductors must be listed “PV Wire,” NOT USE-2, per 2013 CEC 690.35(D))
Central/String Inverter Systems for One and Two Family Dwellings

S11) Are PV source circuits combined prior to the inverter? Yes / No

If No, use Single Line Diagram 3 and proceed to **STEP#S13**.

If Yes, **Is the PV source circuit combined on the roof? Yes / No**

If No, use Single Line Diagram 4.

If Yes, provide a load break disconnecting means rated for the load in the combiner or within 6ft of the combiner (CEC 690.15(C)), and use single line diagram 4.

If the source circuit voltage to combiner is 80 volts or greater, provide listed Arc-Fault Circuit protection (CEC 690.11).

Source circuits and output circuits connected to more than one electrical source may be required to have overcurrent protection devices (OCPDs) located so as to provide overcurrent protection from all sources per 690.9(A). Fuses (when used) shall be installed as part of a finger safe fuse holder. Where source circuit OCPD is not required, please put N/A in S11A or S11B as applicable.

Source circuit OCPD rating:

A. Combiner 1:

\[
(Total \text{ number of source circuits}) - 1 = \text{(A)}
\]

\[
\text{(A)} \times (\text{Module } I_{sc}) \times 1.25 = \text{(B)} \text{ Amps}
\]

Modules max OCPD rating (from module nameplate) = \text{(C) Amps}

If \((B) > (C)\), source circuit OCPD is required at the combiner to protect paralleled source circuits

Source circuit OCPD size \text{ _______ Amps}

B. Combiner 2 (If unused, circle N/A):

\[
(Total \text{ number of source circuits}) - 1 = \text{(A)}
\]

\[
\text{(A)} \times (\text{Module } I_{sc}) \times 1.25 = \text{(B)} \text{ Amps}
\]

Modules max OCPD rating (from module nameplate) = \text{(C) Amps}

If \((B) > (C)\), source circuit OCPD is required at the combiner to protect paralleled source circuits

Source circuit OCPD size \text{ _______ Amps}
S12) **Sizing PV Output Circuit Conductors** – If a Combiner box will NOT be used [STEP#S11], proceed to STEP#S13. Use the LARGER minimum conductor ampacity from **Method A** or **Method B** when determining required conductor size, for both combiners 1 and 2 (when applicable).

Combiner 1:*
- **Method A:**

 Minimum conductor ampacity: Maximum source circuit current [STEP#S9] \(\times 1.25 \times \text{Number of parallel source circuits (STEP#S5)} \) = \(\text{Amps} \)

- **Method B:**

 \(# \text{ of current-carrying conductors in raceway} \times \text{Raceway height above the roof} \times \text{inches (N/A if inapplicable)} \)

 \(C_r = \text{____} \times \text{____} \times \text{____} \)

 Minimum conductor ampacity: Maximum circuit current [STEP#S9] \(\times \text{Number of parallel source circuits (STEP#S5)} \) / \(C_r \times C_t\) = \(\text{Amps} \)

Using the greater current as calculated in **Method A** or **Method B**, use Table 310.15(B)(16) to identify output circuit conductor size (using 90°C-rated copper insulated conductors). The minimum conductor ampacity calculated from **Method A** or **Method B** shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (60°C or 75°C).

Minimum Output Circuit Conductor Size _______ AWG

Combiner 2 (If unused, circle N/A): N/A

- **Method A:**

 Minimum conductor ampacity: Maximum source circuit current [STEP#S9] \(\times 1.25 \times \text{Number of parallel source circuits (STEP#S5)} \) = \(\text{Amps} \)

- **Method B:**

 \(# \text{ of current-carrying conductors in raceway} \times \text{Raceway height above the roof} \times \text{inches (N/A if inapplicable)} \)

 \(C_r = \text{____} \times \text{____} \times \text{____} \)

 Minimum conductor ampacity: Maximum circuit current [STEP#S9] \(\times \text{Number of parallel source circuits (STEP#S5)} \) / \(C_r \times C_t\) = \(\text{Amps} \)

Using the greater current as calculated in **Method A** or **Method B**, use 310.15(B)(16) to identify output circuit conductor size (using 90°C-rated copper insulated conductors). The minimum conductor ampacity calculated from **Method A** or **Method B** shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (60°C or 75°C).

Minimum Output Circuit Conductor Size _______ AWG

S13) Inverter DC Disconnect (The dc disconnect shall be grouped with the inverter and inverter ac disconnect)

Does the inverter have an integrated dc disconnect? Yes / No

If **yes**, proceed to STEP#S14.

If **no**, the external dc disconnect to be installed is rated for \(\text{____} \text{Amps (dc) and ______ Volts (dc)} \)

The dc disconnect rating must be greater than or equal to the Max Output Circuit Current [STEP#S12 – Method A] or Max Source Circuit Current [STEP #S10 - Method A].
SOLAR PV STANDARD PLAN - COMPREHENSIVE

Central/String Inverter Systems for One and Two Family Dwellings

AC Information:

<table>
<thead>
<tr>
<th>S14) Inverter information:</th>
<th>Manufacturer: ____________________ Model: ____________________ Max. Continuous AC Output Current Rating: _______ Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Inverter DC Input Current Rating: _______ Amps</td>
</tr>
</tbody>
</table>

Max Source Circuit Current (STEP#S9) _______ Amps × Number of parallel source circuits (STEP#S5) _______ = _______ Amps

Calculated current from the line above (______ Amps) ≤ Max. Inverter Short Circuit Current Rating (______ Amps)

Max. Inverter Short Circuit Current Rating = 1.5 (per UL 1741 testing standard) × Max. Inverter DC Input Current Rating, if max short circuit current rating is not available from manufacturer.

Integrated DC Arc-Fault Circuit Protection? Yes / No (If “No” is selected, provide arc-fault protection per 690.11)

S15) Sizing Inverter Output Circuit Conductors and OCPD: Use the LARGER conductor ampacity from **Method A** or **Method B** when determining conductor size. Use **Method A** to determine Inverter Output OCPD rating.

Method A:

Minimum conductor ampacity: Max AC Output Current Rating [STEP#S14] × 1.25 = _______ Amps

Method B:

of current-carrying conductors in raceway: _______ Raceway height above the roof: _______ inches

\[C_F = C_r \text{ is the conduit fill coefficient (refer to Table 310.15(B)(3)(a))} \]

\[C_T = C_r \text{ is the coefficient dependent on the highest continuous ambient temperature (refer to Table 310.15(B)(2)(a) and raceway height above roof (refer to Table 310.15(B)(3)(c) if applicable)} \]

Minimum conductor ampacity: Maximum ac output current rating [STEP#S14] _______ / (C_F × C_T) = _______ Amps

Minimum Conductor Size: AWG

Using the greater current as calculated in **Method A** or **Method B**, use Table 310.15(B)(16) to identify ac circuit conductor size. The minimum conductor ampacity shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (60°C or 75°C).

Size the inverter output OCPD based on the value calculated in **Method A**. Where the figure is between two standard values of fuse/breaker sizes (see 240.6(A)), the next higher size may be used (see 240.4(B)). The OCPD’s rating may not exceed the conductor ampacity or the inverter manufacturer’s max OCPD rating for the inverter.

Inverter Output Max OCPD rating = _______ Amps

S16) Per Section 690.53, a permanent label for the dc power source shall be installed at the PV dc disconnecting means that shall indicate the following:

(a) Rated maximum power-point current \(I_{mpp} \) from the module nameplate:

\[I_{mpp} \times \{ \text{1 (one source circuit) OR } \# \text{ source circuits in parallel [STEP#S5]} \} = \text{_______ Amps} \]

(b) Rated maximum power-point voltage \(V_{mpp} \) from the module nameplate:

\[V_{mpp} \times \text{_______} \{ \text{Max # of modules per source circuit [STEP#S5]} \} = \text{_______ Volts} \]

(c) Short circuit current of the PV system (= STEP#S9, if no strings are combined prior to inverter)

\[\text{Maximum source circuit current (STEP#S9) } \times \text{_______ (Number of strings)} = \text{_______ Amps} \]

(d) Maximum system voltage [STEP#S7 or #S8 for systems with dc/dc converters]

\[\text{[For systems with dc/dc converters, this label’s maximum system voltage value shall be the larger of the following: the lowest value of the inverter’s input voltage range OR the value calculated in STEP#S8.]} \]

(S17 and S18 reserved for future)
SOLAR PV STANDARD PLAN - COMPREHENSIVE

Central/String Inverter Systems for One and Two Family Dwellings

S19) Rapid Shutdown

The rapid shutdown initiation device shall be labeled according to CEC 690.56(C), and its location shall be shown on the site plan drawing. The rapid shutdown initiation device may be the inverter output or input circuits’ disconnecting means, the service main disconnect, or a separate device as approved by the AHJ. The disconnecting means shall be identified for the purpose, suitable for their environment, and listed as a disconnecting means. A single rapid shutdown initiation device shall operate all disconnecting means necessary to control conductors in compliance with CEC 690.12.

Note: Check with the AHJ regarding approval where field verification of reduction of voltage within the time required by CEC 690.12 is performed.

Rapid shutdown shall be provided as required by CEC 690.12 with one of the following methods (Select one):

- The inverter(s) is within 10 feet of the array, and the location of the inverter is such that uncontrolled PV system conductors are no greater than 5 feet of length within the building. A remotely-controlled AC disconnecting means is required immediately adjacent to or as close as practicable to the inverters, and located within 10 feet of the array.

- The inverter(s) is within 10 feet of the array, and the location of the inverter is such that uncontrolled PV system conductors are no greater than 5 feet of length within the building. Reduction of the voltage for the inverter output within the time required by CEC 690.12 shall be verified in the field, or the inverter output is listed to UL 1741 with rapid shutdown capability.

- Remotely-controlled DC disconnecting means are located within 10 feet of the PV array and DC input of the inverter(s), and the locations of the disconnecting means are such that uncontrolled PV system conductors are no greater than 5 feet of length within the building. Reduction of the voltage for the inverter output within the time required by CEC 690.12 shall be verified in the field, or the inverter output is listed to UL 1741 with rapid shutdown capability.

- Remotely-controlled DC disconnecting means is located within 10 feet of the array at the DC input of inverter(s) connected to a module level DC-DC converter circuit where the DC-DC converter circuit meets the requirements for controlled conductors when disconnected from the inverter. Reduction of the voltage for the DC-DC converter output and the inverter output within the time required by CEC 690.12 shall be verified in the field, or the DC-DC converter output and the inverter output are listed to UL 1741 with rapid shutdown capability.

- A UL 1741-listed and identified inverter(s) with input and output rapid shutdown capability supplying module level DC-DC converter circuit where the DC-DC converter circuit meets the requirements for controlled conductors when disconnected from the inverter.

- A UL 1741-listed rapid shutdown system:

 Manufacturer: __

 Testing Agency Name: __

 System Model Number: __

 System Components: __
S20) Grounding and Bonding:

Check one of the boxes for whether system is grounded or ungrounded:

- □ GROUNDED (SEE A & B)
- □ UNGROUNDED (SEE A & C)

A. All Systems:
Modules and racking must be bonded by a method listed to the UL 2703 standard and recognized by the respective equipment manufacturers. Bonding method is subject to AHJ approval. DC and AC equipment grounding conductor (EGC) shall be sized based on source and output circuit conductors per 690.45 using Table 250.122. Where exposed to physical damage, it is required to be #6 AWG copper per 690.46. A DC EGC is required for both grounded and ungrounded systems. If an existing premises grounding electrode system is not present, a new grounding electrode system must be established per 250.53. The DC EGC leaving the array and the AC EGC must be contained within the same raceway or cable or otherwise run with the circuit conductors serving the array per 690.43(F), 690.43(A), and 250.134(B).

Where supplementary grounding electrodes are installed, a bonding jumper to the existing grounding electrode must be installed. Bonding jumpers must be sized to the larger grounding conductor that it is bonded to (CEC 250.58).

B. Grounded Systems:
The DC grounding electrode conductor (GEC) from the inverter terminal must be unbroken or irreversibly spliced and sized minimum #8 AWG copper per article 250.166. The DC GEC from the inverter terminal to the existing grounding electrode system must tie to the existing grounding electrode or be bonded to the existing AC GEC using an irreversible means, per 250.64(C)(1).

A combined DC GEC and AC EGC may be run from the inverter DC grounding terminal to the grounding busbar in the associated AC equipment. This combined grounding conductor must be sized to the larger of the GEC and EGC sizes, with the bonding requirements of EGCs and remaining continuous as a GEC, per 690.47(C)(3).

C. Ungrounded Systems:
A DC GEC shall not be required from the inverter DC grounding terminal to the building grounding electrode system. The EGC shall run from the inverter to the grounding busbar in the associated AC equipment, sized per 690.45, using Table 250.122. Ungrounded conductors must be identified per 210.5(C). White-finished conductors are not permitted.
Load Center Calculations:
(Only include if a load center will be installed)

S21) Maximum output for each inverter:
From supplemental calculation sheet used, list the calculated maximum ac output value [STEP#S14]:

 Inverter #1 Maximum ac output: _____Amps
 Inverter #2 Maximum ac output: _____Amps

S22) Load Center Output:
Calculate the sum of the maximum ac outputs from [STEP#S21].

 Total inverter currents connected to load center = _____Amps

Use the LARGER conductor ampacity from Method A or Method B when determining conductor size. Use Method A to determine Inverter Output OCPD rating.

Method A:

 Minimum conductor ampacity: Max AC Output Current Rating [STEP#S22] ______ x 1.25 = ______Amps

Method B:

 # of current-carrying conductors in raceway: ______ Raceway height above the roof: ______ inches
 C_F = ______ C_f is the conduit fill coefficient (refer to Table 310.15 (B)(3)(a))
 C_T = ______ C_t is the coefficient dependent on the highest continuous ambient temperature (refer to Table 310.15(B)(2)(a)) and raceway height above roof (refer to Table 310.15(B)(3)(c) if applicable)
 Minimum conductor ampacity: Maximum ac output current rating [STEP#S22] _____ / (C_f x C_t) = ______Amps

Minimum Conductor Size: _______ AWG

Using the greater ampacity as calculated in Method A or Method B, use Table 310.15(B)(16) to identify ac circuit conductor size. The conductor ampacity shall not exceed the ampacity of chosen conductor rated at the lowest temperature rating of any connected termination, conductor, or device (60°C or 75°C).

Size the OCPD based on the value calculated in Method A. Where the figure is between two standard values of fuse/breaker sizes (see 240.6(A)), the next higher size may be used provided the conductors are sufficiently sized.

 Overcurrent Protection Device: _______Amps
 Load center busbar rating: _______Amps

The sum of the ampere ratings of overcurrent devices in circuits supplying power to a busbar or conductor shall not exceed 120 percent of the rating of the busbar or conductor.
Central/String Inverter Systems for One and Two Family Dwellings

SOLAR PV STANDARD PLAN - COMPREHENSIVE

SINGLE-LINE DIAGRAM #3 – ADDITIONAL INVERTER FOR DIAGRAM #1

INVERTER # 2

- CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:
 - GROUNDED (INCLUDE GEC)
 - UNGROUNDED
- REFER TO STEP 19 FOR RAPID SHUTDOWN DETAILS
- FOR UNGROUNDED SYSTEMS:
 - DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
 - UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

CONDUCTOR/CONDUIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>USE 2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PARALLEL DC/DC CONVERTERS ON ONE SOURCE CIRCUIT (FIXED UNIT VOLTAGE DC/DC CONVERTERS)

- ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE

DC/DC CONVERTERS ARE ALL RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS)

* Separate AC Disconnect Shall be Optional.
Central/String Inverter Systems for One and Two Family Dwellings

SOLAR PV STANDARD PLAN - COMPREHENSIVE

Version: April 2, 2020

SOLAR PV MODULE / STRING
DC/DC CONVERTERS INSTALLED?: YES / NO (IF YES, STEPS 6 & 8 REQUIRED)
SOURCE CIRCUIT JUNCTION BOX INSTALLED?: YES / NO
COMBINER BOX (STEPS 11 & 12 REQUIRED)
SEPARATE DC DISCONNECT INSTALLED?: YES / NO
INTERNAL INVERTER DC DISCONNECT: YES / NO
CENTRAL INVERTER
*SEPARATE AC DISCONNECT INSTALLED?: YES / NO
TO LOAD CENTER ON LINE DIAGRAM 3

*Separate AC Disconnect Shall be optional.

INVERTER # 2
CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:
GROUND (INCLUDE GEC)
UNGROUNDED

REFER TO STEP 519 FOR RAPID SHUTDOWN DETAILS
FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

COMBINER CONDUCTOR/CONDUIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUCT/ CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>USE 2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NON-COMBINED STRINGS CONDUCTOR/CONDUIT SCHEDULE (IF APPLICABLE)

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUCT/ CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>USE 2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE

IF DC/DC CONVERTERS ARE USED, THEY ARE RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS)

Version: April 2, 2020

21
Items required: roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means, roof access points, and rapid shutdown initiation device.