This is intended to provide uniform application of the codes by the plan check staff and to help the public apply the codes correctly.

Section: Mechanical Plan Check

Plan Check/PCIS Application No.: __________________________ Date: __________________________

Job Address: __

Applicant Name: _______________________________________

Address: ___ Phone: ___________________________

City/State/Zip: _____________________________ E-mail: _______________________________

Plan Check Engineer: __________________________________

Telephone: _____________________________ E-mail: firstname.lastname@lacity.org

Your feedback is important; please visit our website to complete a Customer Survey at

www.ladbs.org/LADBSWeb/customer-survey.jsf.

Your plans have been examined and the issuance of a permit is withheld for the reasons set forth. The approval of plans and specifications does not permit the violation of any section of the Code, or other local ordinance or state law.

INSTRUCTIONS:

- Corrections with circled item numbers apply to this plan check.
- Additional corrections are at the end of the list.
- Incomplete or non-legible drawings or calculations will not be accepted.
- Incorporate all comments as marked on the checked set of plans and calculations and this correction sheet.
- For each correction indicate the sheet number and detail or note number on the plans where the corrections are made.
- WHEN YOU HAVE COMPLIED WITH ALL CORRECTIONS, CALL OR EMAIL THE PLAN CHECK ENGINEER TO MAKE AN APPOINTMENT FOR VERIFICATION
- PLEASE BRING THE MARKED UP PLANS AND THE CORRECTIONS SHEET TO THE VERIFICATION APPOINTMENT

SEE MARKED UP PLANS FOR CLARIFICATIONS OF CORRECTIONS.
NOTES ON PLANS

1. Plans shall bear, in every sheet, the registration or license number and signature of an architect, contractor, or engineer, registered in the appropriate classification by the State of California. (Chap. 7, Div. 3, Business and Professional Code, Art. 2, Sec. 6735.4; LAPC 101.5.2; LAPC 101.5.6; LAPC 103.2.1)

2. Indicate the job address on each sheet of the plans. (LAPC 101.5.1; LAPC 103.2.2)

3. Indicate on the plans the piping materials (LAPC 701.0).

4. Provide air tight cover for the sump (LAPC 710.10).

5. Show load discharging into the sump (LAPC 101.5.1, LAPC 103.2.2).

6. Show the make, model, and horse power of the pump on the plans (LAPC 101.5.1, LAPC 103.2.2).

7. State the length of the pipe from the pump to the gravity line, and the elevation difference between the bottom of the sump and the gravity line (LAPC 101.5.1, LAPC 103.2.2).

8. Sump(s) shall be made of concrete, metal or other approved materials. Fiberglass sumps shall be approved by the Los Angeles City Mechanical Testing Laboratory, or other City of Los Angeles recognized agency (LAPC 710.8, LAPC 301.1).

9. Please specify the type of material of the sump on the plans, or specify make, model and research report number of the prefabricated sump (LAPC 101.5.1, LAPC 301.1).

10. The sump pit shall be at least 15 inches in diameter and 18 inches in depth (Rain water only, LAPC 1101.5.2).

11. Provide an approved modification from Grading allowing the site drainage to drain into a sump system (LABC 7013.10).

PLAN DETAILS

12. Provide a plot plan or lay out showing the sump location, the inlet lines, the outlet line, and gravity line (LAPC 101.5.1, LAPC 103.2.2).

13. Show the gravity line all the way to the property line (LAPC 101.5.1, LAPC 103.2.2).

14. When discharging to the public street the pressure line shall connect to a gravity pipe within the property (Department of Public Works requirement).

15. When discharging under the curb, the drain line shall not be smaller than three inch diameter nor greater than four inch diameter (Department of Public Works requirement).

16. When the gravity line from rain water exceeds four inch in diameter either use rectangular fitting having height between three and four inches and a cross section equal or greater the cross section of the pipe, or manifold multiple pipes having aggregate cross sectional area equal or greater the cross sectional area of the gravity pipe (Department of Public Works requirement).

17. Provide a riser diagram showing the sump, sump inlet & outlet check valves and gravity line (LAPC 101.5.1, LAPC 103.2.2).

18. The discharge line shall connect to the horizontal gravity line from the top through a wye branch fitting (LAPC 710.4).

19. Show size, length and type of material of the pump discharge line (LAPC 101.5.1, LAPC 103.2.2).

20. The discharge line from the ejector or sump pump shall be provided with an accessible check valve and gate valve (LAPC 710.4).

21. The gate valve shall be located on the discharge side of the check valve (LAPC 710.4).

22. Gate valves and check valves shall be located outside the pit (LAPC 710.6).

23. Provide dual pumps each capable of handling the load independently (LAPC 710.9; LAPC 1101.13).

24. Sump(s) shall be provided with a vent pipe which shall extend through the roof (LAPC 710.7).

25. Show high water level. It shall be at least 2 inches below the lowest inlet (LAPC 710.9).

26. Sewage ejectors located in single family dwellings and receiving waste from water closets or urinals, shall be able to pass a 1-1/2 inch diameter ball (LAPC 710.3(2)).

27. Sewage ejectors located in single family dwellings and receiving waste from water closets or urinals, shall have a minimum pump size of 2" and shall be connected to a discharge pipe of at least 2 inch (LAPC 710.3.(2)).

28. In other than single dwellings, sewage ejectors receiving waste from water closets or urinals, shall be able to pass a 2 inch diameter ball (LAPC 710.3(3)).
29. Sewage ejectors, in other than single dwellings, and receiving waste from water closets or urinals shall have discharge piping, check valves, and gate valves not less than 3 inch in diameter (LAPC 710.3(3))

30. The discharge line from the sump shall be at least 1 ½ inch diameter (Subsoil only) (LAPC 1101.5.2)

31. Backwater valves shall be installed to prevent flooding of the garage from outside water (Subsoil and Rain water only LAPC 1101.5.4)

32. Show all pipe sizes on the plan (LAPC 101.5.1, LAPC 103.2.2).

CALCULATIONS

33. Determine the gallons per minute going into the sump (LAPC 101.5.1, LAPC 103.2.1).

34. Calculate the amount of water collected at the rate of 0.021 gpm per square foot (LAPC Table D1.1).

35. Provide a hydrologic report based on the proper 50-year isohyetal. Calculations shall be according to the Peak Rate Method for a concentration time of 5 minutes (LABC 7013.6).

36. Provide pump performance curve LAPC 101.5.1, LAPC 101.3.2).

37. Provide calculations for the system curve. Take into consideration all the fittings, gate valve and backwater valve (LAPC 101.5.1, LAPC 103.2.1).

38. Draw the system curve on the pump curve to determine the point of intersection, which will determine the volume flow coming out of the pump (LAPC 101.5.1, LAPC 103.2.1).

39. Determine the fixture unit loading of the gravity drain by allowing two (2) fixture units for every gallon per minute pumped by the sewage ejector (LAPC 702.3, LAPC 710.5).

40. Determine the square footage loading of the gravity drain by allowing 47.62 square feet of area for every gallon per minute pumped by the sump pump (LAPC Table D1.1).

41. The pump shall have a discharge capacity of not less than 15 gpm. (Subsoil drainage only) (LAPC 1101.5.2)

42. The pump shall have a discharge capacity of not less than 20 gpm (Sewage ejectors LAPC 710.3(1))

43. Provide calculations showing that the discharge to the street does not exceed 7 ft/s (Department of Public Works requirement).

44. Provide clearance from the Department of Public Works allowing the water velocity to exceed 7 ft/s at the point of discharge to the public street (Department of Public Works requirement).
EXAMPLES

The following are design examples.

DO NOT SUBMIT PLANS ON 8\(\frac{1}{2}\)“ X 11” Sheets.
USE REGULAR SIZE BLUEPRINTS
Pipe Material: No Hub Cast Iron

Pump:
Best Pump Co. Model SE 600 Explosion proof
26 ft @ 85 gpm
1725 rpm 1 hp
3 phase 60 Hz 230V

<table>
<thead>
<tr>
<th>Calculation of Equivalent Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) 90° elbows</td>
</tr>
<tr>
<td>(3) 45° elbows</td>
</tr>
<tr>
<td>(1) Backwater Valve</td>
</tr>
<tr>
<td>(1) Gate Valve</td>
</tr>
<tr>
<td>Developed Pipe Length</td>
</tr>
<tr>
<td>Total Equivalent Length</td>
</tr>
</tbody>
</table>

vent through roof

2" vent

Air tight cover

85 gpm=170 f.u.

3 f.u. 205 f.u.

4"

2 inches minimum from high water level

46 f.u. = 23 gpm

h = 20 ft

DO NOT SUBMIT PLANS ON
8½" X 11" Sheets.
USE REGULAR SIZE BLUEPRINTS
Sample of calculations:

Step 1. Calculate the equivalent pipe length:
Use the following equivalent length for the fittings:

<table>
<thead>
<tr>
<th>Diameter of fitting in inches</th>
<th>45° bend feet</th>
<th>90° bend feet</th>
<th>Gate Valve feet</th>
<th>Backwater valve feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>4'</td>
<td>7'</td>
<td>1.3'</td>
<td>11'</td>
</tr>
<tr>
<td>3"</td>
<td>6'</td>
<td>10'</td>
<td>2'</td>
<td>16'</td>
</tr>
<tr>
<td>4"</td>
<td>8'</td>
<td>14'</td>
<td>2.7'</td>
<td>22'</td>
</tr>
<tr>
<td>6"</td>
<td>12'</td>
<td>20'</td>
<td>4'</td>
<td>31'</td>
</tr>
</tbody>
</table>

(3) 45° bend 18 ft
(3) 90° bend 30 ft
(1) Gate Valve 2 ft
(1) Backwater valve 16 ft
Developed pipe length 75 ft

TOTAL EQUIVALENT LENGTH 141 ft

Step 2. Calculate the System Curve:

\[h_n = \frac{10.51Q^{1.85}}{C^{1.85}d^{4.87}} l \]
\(h = \text{difference in elevation between the bottom of the sump basin and the gravity sewer line} \)

<table>
<thead>
<tr>
<th>(Q) (g.p.m.)</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_n)</td>
<td>1.283</td>
<td>2.716</td>
<td>4.624</td>
<td>6.987</td>
</tr>
<tr>
<td>(h_{tot})</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>27</td>
</tr>
</tbody>
</table>
Step 3. **Find the system operating point**

Jot down the system curve on top of the pump performance curve. The point of operation of the pump system is where the two curves intersect; that is:

\[Q = 85 \text{ gpm}, \quad h_{\text{tot}} = 26 \text{ ft} \]

![Diagram showing system curve and pump performance curve intersecting at a point where \(Q = 85 \text{ gpm} \) and \(h_{\text{tot}} = 26 \text{ ft} \).]

Step 4. **Acceptance of the pump:**

The flow coming out of the pump must be equal or greater than the flow coming into the sump:

\[(\text{fixture units coming in}) \times (2 \text{ fixture units/gpm}) < \text{gpm pumped out}\]

Step 5. **Determine the number of fixture units discharging from the pump:**

\[85 \text{ gpm} \times 2 \text{ fixture units/gpm} = 170 \text{ fixture units.}\]

Step 6. **Conclusions**

Add the fixture units discharging from the pump to the fixture units in the horizontal drain and continue checking sizing the system.
SIZING OF SUMP BASIN

The code does no regulate the size of the sump basin in a sewer system.

However, the basin needs to be large enough to accommodate the pump or pumps installed inside it.

Some designers select a usable volume of the sump basin to be at least twice the volume that is ejected in one minute by the pump. (In our example 85 gal x 2 = 170 gal.), or

Other designers chose a pump and a basin to have a minimum cycling time of 6 minutes (10 start ups per hour).

The cycling time is the time between two consecutive pump start-ups:

\[\text{Cycling time} = \text{Time to empty the basin} + \text{Time to fill the basin} \]

Rate of discharge = 85 gpm (Pump discharge) – 23 gpm (Water incoming into the sump) = 62 gpm

If the sump usable volume is 170 gal, then the time it takes to empty the basin is:

\[\frac{170 \text{ gal}}{62 \text{ gal/min}} = 2.7 \text{ min} \]

and the time it takes to fill the basin is:

\[\frac{170 \text{ gal}}{23 \text{ gal/min}} = 7.4 \text{ min} \]

Thus, the cycling time is:

\[(2.7 - 7.4) \text{ min} = 10.1 \text{ min} \]

Therefore, since the cycling time is more than 6 minutes, as useable sump volume of 170 gal is adequate.